

TERAA: Teamwork for Effective Research Action in the Americas

Strengthening Teamwork to Confront Socio-Ecological Challenges: Generating New Knowledge for Effective Action in the Americas

Lily House-Peters Gabriela Alonso Yanez Sebastián Bonelli Martín García Cartagena Michelle Farfán Gutiérrez Ignacio Lorenzo Jeremy Pittman

Montevideo. March 19, 2015

Presentation Outline

- I. TERAA Project
- II. Survey Data Analysis
- III. Next Steps
- IV. Questions, Disscusion, and Feedback

TERAA PROJECT

Research Problem

The existing gap between scientific knowledge production and policymaking presents a significant problem in the context of increasing uncertainty and risk in socio-ecological systems.

How to tackle the problem?

Transforming the current interface between science and policy requires **improved understanding of the individual and group dynamics of transdisciplinary (TD) research**.

Objectives

1. To identify **individual attributes** and **team characteristics** that positively or negatively influence team research outcomes.

2. To analyze **relations** between individual attributes, team characteristics, and possible research outcomes.

3. To **develop an agent-based conceptual framework** grounded in empirical data to represent the complex relations between team dynamics and team research outcomes.

Research Questions

- 1. How do **individual attributes** and **team characteristics** interact to influence TD research/action **outcomes**?
- 2. What **combinations** of **individual attributes** and **team characteristics** lead to TD research/action **outcomes** that successfully bridge the knowledge- action gap?

Conceptual Model

Outcomes

Outcomes	Description
Science Impact	Lowest tier of possible outcomes; Production and dissemenation of scientific knowledge through peer- reviewed pulblication, masters' theses, dissertations, book chapters, and conference presentations (Olsen et al. 1997; Olsen 2003)
Policy Impact	Second tier of possible outcomes; Integration of scientific findings into policy documents for governments and NGOs (Olsen et al. 1997; Olsen 2003)
Social-Ecological System (SES) Impact	Highest tier of possible outcomes; Visible, on-the- ground solutions and action-based projects that are enacted to improve SES problems (ex. Water scarcity, biodiversity loss) (Olsen et al. 1997; Olsen 2003)

Survey Data Analysis

Survey Highlights

- 1. Study Sites
- 2. Demographics
- 3. Incentives, Motivations, Interests
- 4. Teamwork Perspectives
- 5. Scenarios
- 6. Team Effectiveness

Study Sites

Target:

- IAI TD/ID Projects
 - CRN
 - SGP-HD & SGP-CRA
 - Seed Grants
- 22 Projects (Current and Past)

Survey Response Rate:

- 159 invited
- 87 responses (45 completed)

Demographics

Incentives & Motivations

Teamwork Perspectives

Team Structure of Projects

Number of answers

Scenario: Priority Outcomes

Team Effectiveness

Factors related to Team Success		Outcomes		
1.	Previous experience with team members	Science	Policy	SES Impact
2.	Face to Face Interaction	Impact	Impact	(OSE)
3.	Joint Training Activities	(OSI)	(OPI)	
4.	Trust			
5.	Leadership from the PI			
6.	Leadership by the PI and Co-Pis			
7.	Presence of a mix of physical scientists,			
	social scientists, and engineers			
8.	Presence of practitioners and			
	stakeholders			
9.	Academic Incentives			
10.	Policy Incentives			
11.	. Prestige of the team			
12.	. Openness to risk			

Team Effectiveness

Individual and Team Dimensions

	Individual		Team			
Factors	Cognitive	Conative	Affective	Structure	Function	Composition
Previous experience with the team members			x		x	
Face to face interaction	x				x	
Joint training activities			x		x	
Trust			х		x	
Strong leadership from PI	x			x		
Strong leadership shared by the PI and Co-PIs	x			x		
Presence of a mix of physical scientists, social scientists, and engineers	x					x
Presence of practitioners and stakeholders		x			x	
Academic incentives		х				x
Policy incentives	x			x		
Prestige of the team		х				x
Openness of team members to take risks			х		x	

Synthesis

NEXT STEPS

Interview design

- 1. History of involvement: Exploring personal connections/friendship
- 2. Generic teamwork skills (Kozlowski & Ilgen, 2007): Collective setting of goals
- 3. Generic teamwork skills: social interaction
- 4. Generic teamwork skills: Collective setting of goals
- 5. Interactional competence (Halvorsen, 2013): communication
- 6. competence: managing conflict-mediation.
- 7. Interactional competence:
- 8. Pluralism " Open to otherness" (Mitcham, 1989)
- 9. Effective action-Menthal models
- 10. Effective action- Framing
- 11. Effective action- Emotional numbing
- 12. Salient information.
- 13. Effective action-Boundary organizations.

ABM Tool Development: Scenarios

Scenario	Variable Values	Impact on Outcomes
Scenario 1	Prestige = False Incentive-Academia = False Incentive-Policy = False Train-Together = False Face-to-Face Interaction = False Trust = False Previous Experience = True	Science-Impact = 0.4 (partial success at each time step) Policy-Impact = 0 (none) SES-Impact = 0 (none)
Scenario 2	Prestige = False Incentive-Academia = True Incentive-Policy = True Train-Together = True Face-to-Face Interaction = True Trust = False Previous Experience = True	Science-Impact = 0.6 (partial success at each time step) Policy-Impact = 0.2 (partial success at each time step) SES-Impact = 0 (none)
Scenario 3	Prestige = True Incentive-Academia = True Incentive-Policy = True Train-Together = False Face-to-Face Interaction = True Trust = True Previous Experience = True	Science-Impact = 0.7 (partial success at each time step) Policy-Impact = 0.5 (partial success at each time step) SES-Impact = 0.1 (partial success at each time step)

Results: Agent Based Model

References

Barabasi, A. L. et al. 2002. Evolution of the Social Network of Scientific Collaborations. *Physica A* 311: 590-614.

Börner, K. et al. 2010. A multi-level systems perspective for the science of team science. *Science Translational Medicine* 2(49): 24-49.

Cornell, S. et al. 2013. Opening up knowledge systems for better responses to global environmental change. *Environmental Science and Policy* 28: 60-70.

Creswell, J.W. 2013. Research design: Qualitative, quantitative, and mixed methods approaches. Sage.

Eigenbrode, S.D. et al. 2007. Employing philosophical dialogue in collaborative science. *BioScience* 57(1): 55-64.

- Farhat, D. 2011. Virtually science: an agent-based model of the rise and fall of scientific research programs. Journal of Economic Methodology 18 (4): 363-385.
- Farhat, D. 2013. An agent-based model of interdisciplinary science and the evolution of scientific research networks. *University of Otago Economics Discussion Papers No. 1302*, 12 pp.

Fiore, S.M. et al. 2010. Towards an understanding of macrocognition in teams: developing and defining complex collaborative processes and products. *Theoretical Issues in Ergonomics Science* 11(4): 250-271.

Fischhoff, B. 2013. The sciences of science communication. PNAS 110(3): 14033-14039.

Fjelland, R. 2002. Facing the problem of uncertainty. *Journal of Agricultural and Environmental Ethics* 15(2): 155-169.

Funtowicz, S. and C. Hidalgo. 2008. Ciencia y política con la gente en tiempos de incertidumbre, conflictos de intereses e indeterminación. In: *Apropiación Social de la Ciencia*. Ed: López-Cerezo, J. A., Gómez- González, F. J. Biblioteca Nueva, Madrid.

Gable, G.G. 1994. Integrating case study and survey research methods: An example in Information Systems. *European Journal of Information Systems* 3(2): 112-126.

Gilbert, N. and K.G. Troitzsch, K. G., 2005. Simulation and social science. In: *Simulation for the Social Scientist*. Ed: Gilbert, N., Troitszch, K. G., pp. 1-14.

References

- Hidalgo, C., et al, 2011. From enthusiasm to pragmatism: Shifting perspectives of success in Interdisciplinary Research. *Interciencia.* 36:21;113-120.
- Newman, M.E.J. 2001. The structure of scientific collaboration networks. *Proceedings of the National Academy of Sciences* 98(2): 404-409.
- Olsen, S.B. 2003. Frameworks and indicators for assessing progress in integrated coastal management initiatives. *Ocean & Coastal Management* 46: 347–361.
- Olsen, S., J. Tobey, and M. Kerr. 1997. A common framework for learning from ICM experience. *Ocean & Coastal Management* 37(2): 155-174.
- Pahl-Wostl, C., et al. 2013. Transition towards a new global change science: Requirements for methodologies, methods, data and knowledge. *Environmental Science and Policy* 28: 36-47.
- Pyka, A. et al. 2007. Simulating knowledge: Generation and distribution. *Processes in Innovation Collaborations and Networks, Cybernetics and Systems: An International Journal* 38(7): 667-693.
- Rojas-Villafane, J.A. 2010. An Agent-based Model of team coordination and performance. FIU Electronic Theses and Dissertations. Paper 250.
- Stokols, D. 2006. Toward a science of transdisciplinary action research. *American Journal of Community Psychology* 38: 63-77.
- Stokols, D., et al. 2008. The science of team science: Overview of the field and introduction to the supplement. *American Journal of Preventive Medicine* 35(2): 77-89.
- Watkins, C., et al. 2013. Understanding the mechanisms of collective decision making in ecological restoration: An agent-based model of actors and organizations. *Ecology and Society* 18(2): 32.
- Zellner, M.L. 2008. Embracing complexity and uncertainty: The potential of agent-based modeling for environmental planning and policy. *Planning Theory and Practice* 9(4): 437–457.

Thank You!

- Inter-American Institute for Global Change (IAI)
- Centro Interdisciplinario de Respuesta al Cambio y a la Variabilidad Climatica – Espacio Interdisciplinario – UdelaR

Contact Information:

Lily House-Peters (<u>lilyhp@email.arizona.edu</u>) University of Arizona, USA www.teraa.ei.udelar.edu.uy

QUESTIONS, DISCUSSIONS & FEEDBACK

